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The phenomenon of stable propagation of spatially localized solitary waves, has been investigated
for various dynamical systems. If a solitonlike pulse is in resonance with linear waves, then this pulse
emits radiation and therefore it cannot exist as a stationary wave. Nevertheless, it is shown here
that two (or more) radiating (and thus nonexisting as stationary waves) single solitonlike pulses can
still form a stationary bound state due to mutual trapping of their own radiation. Trapped radiation
forms a standing wave, which in turn produces local minima in an effective interaction potential of
the neighboring solitons. However, in contrast to conventional solitons, soliton bound states that are
formed due to trapped radiation exist only for discrete values of soliton parameters, i.e., such bound
states do not form continuous families of localized solutions, and they are inherently unstable. Two
physically important systems for which stationary bound states of radiating solitons can be found

are considered.

PACS number(s): 03.40.Kf, 42.50.Rh, 02.30.Jr

I. INTRODUCTION

Various integrable dynamical equations, for exam-
ple, the nonlinear Schrodinger (NLS) equation, the
Korteweg—de Vries (KdV) equation, and the sine-Gordon
(SG) equation, are known nowadays [1,2]. In physics
these equations are in the center of interest because of
their numerous applications [3]. One of the main fea-
tures of these (and many other) integrable dynamical
equations is the existence of solitons, stable spatially lo-
calized waves with the unique particlelike properties. In
general, all solitons can be divided into two major classes:
single solitons (which are stationary in a certain moving
reference frame) and breathers (solitons localized in space
and periodic in time which can be treated as a nonlinear
superposition of single solitons).

In physical applications integrable dynamical equa-
tions usually correspond to certain approximations and
therefore, in many cases, these equations should be gen-
eralized by some small additional terms to make the de-
scription of real physical systems more adequate. Thus
the question of significant importance is what will hap-
pen with solitons of integrable equations if some pertur-
bations are taken into account. (In this paper we are
interested in Hamiltonian perturbations whereas the ef-
fects produced by non-Hamiltonian or dissipative pertur-
bations seem to be well understood [4]. Also we will use
the word “soliton” instead of “solitary wave” for local-
ized solutions of nonintegrable equations as well.) Gen-
erally speaking, the answer to this question is known.
Breather-type solitons are destroyed by almost any type
of perturbations (e.g., see [5] for the SG breathers and
[6,7] for the NLS breathers). However, single solitons
have better chances to survive under action of Hamilto-
nian perturbations. In general, a single soliton is stable
against perturbations that do not lead to resonant inter-
actions of this soliton with small-amplitude linear waves
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[8]. In other words, the phase velocities of all spectral
components of a soliton should not coincide with the
phase velocity of any linear wave that can propagate in
the system. The typical example illustrating this point is
the generalized NLS equation with an additional third-
[8-11,13] or fourth-order derivative term [12-16]:

oU = 6*U 2
— + —— a =0, 1
zaT+6C2+pdd+|U[U (1)
where paaq = i€93U/9¢3 for the former case or p.qq =
€8*U/8¢* for the latter case and |e| <« 1. If € = 0, then
Eq. (1) reduces to the conventional NLS equation that
has the well-known family of one-soliton solutions:

V2a .
cosh[y/a(¢ — v7)]

These solitons exist for any a > 0. For simplicity we
demonstrate the idea of resonant interactions between
a soliton and linear waves for the case of the stationary
soliton (taking v = 0); however, a solution with any value
of v can be easily considered as well.

As a first step in our search for the resonance we
should make a change of variables in Eq. (1) in the
form U(7,{) = W(r,{)e**™ and obtain the equation for
W (r,0),

Uo(’T, C) - i(a‘r—vz-r/4+v(/2)‘ (2)

oW O*W
’L—aT -+ —BF —aW + 'W|2W +padd(W) =0. (3)

It is easy to see that
V2a
cosh(y/a()

is a stationary soliton solution of Eq. (3) at paaa = O.
The phase velocity of any spectral component of the soli-

Wo(() = (4)
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ton (4) is equal to zero. Now the condition for the phase
velocity resonance of the soliton (4) with linear waves
of Eq. (8) has the form V(k) = —a/k —k = 0 [V (k)
stands for the phase velocity of a linear wave with wave
number k], which shows that there is no resonance be-
tween any soliton (4) and any linear wave. However,
the situation is different if the third-order dispersion
Pada = 1€03W/O¢3 is taken into account. Indeed, in this
case the equation for the phase velocity resonance has the
form ek? — a/k — k = 0 and the resonance between the
soliton (4) and linear waves with wave numbers k ~ 1/¢
always takes place. This resonance results in radiation
“beyond all orders” [8,10,11]. For the case of the fourth-
order dispersion p,gq = €8*W/8¢%, in Eq. (3) two dif-
ferent situations are possible. Now the equation for the
phase velocity resonance has the form ek® —a/k —k = 0.
For € < 0 this equation has no solutions, i.e., there is
no resonance of linear waves with solitons, so that the
latter still exist as stable stationary localized solutions
[15,16]. For £ > 0 the situation is similar to the case of
the third-order dispersion and the resonance always takes
place, i.e., any single soliton radiates. Similar examples
for the case of a generalized KdV equation with a small
additional fifth-order derivative term have been analyzed
earlier [8,17,18].

In the present paper we consider the case when a
Hamiltonian perturbation to an integrable equation leads
to the resonance of solitons with linear waves. Single
solitons as stationary solutions do not survive this kind
of perturbation and they always emit radiation, which,
however, can be exponentially small (beyond all orders).
Now the question is whether other types of stationary
localized solutions can exist in such systems.

Recently some attempts to construct stationary lo-
calized solutions for the generalized NLS equation (1)
with an additional small third-order derivative term were
made [19] and a similar idea was also discussed in [20].
The approach of [19,20] is based on the idea that two
radiative solitons can form a bound state as a result of
mutual trapping of their own radiation. However, in Ref.
[19] radiation is emitted only from one side of a soli-
ton. This makes it impossible to construct stationary
two-soliton solutions since, even after suppression of ra-
diation in the asymptotic regions, a power flow from one
soliton to the other still exists and the constructed solu-
tion is always effectively nonstationary.

Thus the question remains: Can stationary localized
solutions exist being in resonance with linear waves? We
will show below that the answer to this question can be
positive if single solitonlike solutions of a problem radiate
symmetrically in both directions from the soliton core
(see Fig. 1). The main model that is considered in this
paper is the dynamical equation

8U 8U 86U 2

which can be obtained from Eq. (1) (with an additional
small positive fourth-order derivative term) by an exact
scaling transformation [15]. Equation (5) describes a spe-
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FIG. 1. (a) Schematic picture of a single symmetrically ra-
diating soliton. (b) Bound state of two identical symmetri-
cally radiating solitons. The first stage of stationary solution
construction.

cial regime of temporal pulse propagation in a nonlinear
optical fiber; U stands for an envelope of a normalized
electric field of an optical pulse. Equation (5) also has
many nonoptical applications. For example, it describes
propagation of “whistlers” in plasmas [21].

We also present the similar results concerning the other
physically important system:

Ow ?w "
“or TTaE W rtwr=0
(6)
1'0'2114-3922 ——av+lw2=0.
or a¢2 2

Equations (6) form a fundamental system describing two-
wave interactions in dispersive (or diffractive) x(* ma-
terials (see, e.g., [22,23]). In Egs. (6) the functions w
and v stand for envelopes of the normalized fundamental
and second harmonics, respectively, o (¢ > 0) and « are
continuous parameters, and r and s can be equal to 1
or —1 (for details see [22,23]). We note that the system
(6) has other physical applications. For example, its sta-
tionary solutions can have the same form as those for the
equations describing coupled Langmuir and ion-sound os-
cillations in plasma [24,25]. Note that the system (6) can
be also considered as a perturbed integrable model since
in the limit o > 1 it can be formally reduced to a single
NLS equation [23].

It is quite interesting to note that some exact solutions
are known for both models (5) and (6) in an explicit
analytical form. For example, Eq. (5) has the stationary
solution [see Fig. 2(a)]
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U, 7) = u(C) e \/g fi?fz(fc//@) A

which was found in [14].

The system (6) also admits exact solutions that de-
scribe two-wave parametric solitons in dispersive x(2)
nonlinear media. For r = 1, s = —1, and @ = 2 it
has the exact solution found in [26] [see Fig. 2(b)],

62 sinh ¢ 6
- OvZemhe ., _ S ®)
cosh® ¢ cosh® {
For r = —1, s = —1, and a = 1, Egs. (6) have another
analytic solution, found in [27] [see Fig. 2(c)],

0.8~
064 (a)
0.4
0.2
> 0
0.2
0.4
-0. 6—:
-0.8]

T T T T

I REREEREE AR RN T
-25 -20 -15 -10 -5 5 10 15 20 25

g

6
1(b)
4 Second
] harmonic

First harmonic

-i10 8 6 -4 -2 0 2 4 6 8 10

{(c)

1.5 First harmonic

1 Second
1 harmonic

'
'y

FIG. 2. Three “remarkable” exact solutions: (a) the solu-
tion (7) [14], (b) the solution (8) [26], and (c) the solution (9)
[27].

w= V2 [1 B cossz/(i/m] ’

] ?
cos?((/2) ]

We will show below that these three exact solutions
(7)—(9) are the particular (simplest) representatives of
a broad class of localized solutions, the so-called two-
soliton radiationless bound states (BS’s) of single radiat-
ing solitons, a fact that has been missed in the literature.
Each of these BS’s is formed with the help of a standing
wave of trapped radiation that self-consistently produces
local extrema in an effective interaction potential of two
radiative solitons, which support this standing wave be-
tween them.

The remainder of the paper is organized as follows. In
Sec. II we provide the outline of the analytic solution
of the BS problem for the case of Eq. (5) and present
corresponding numerical results. We also consider the
stability of the discovered class of two-soliton BS’s. In
Sec. III we present results concerning BS’s of radiating
solitons of the system (6). Finally, Sec. IV concludes the

paper.

II. BOUND STATES OF RADIATING SOLITONS

The physical picture for the formation of the soliton
BS’s due to trapping of radiation will be explained while
analyzing Eq. (5), but it is also possible to carry out a
similar analysis for the case of Egs. (6). We start our
analysis with a quick overview of the results related to
the conventional NLS equation

BU 8*U
— + =55 + [UPU =0. 10
-+ 5 + 1] (10)
The NLS equation (10) can be exactly solved by means of
the inverse scattering transform technique [28]. Equation
(10) has a continuous family of stationary one-soliton so-
lutions

‘/ﬁ elaT+ivo
cosh[v/a(¢ = Go)] ’ (11)

where (p is an initial soliton center position and g is an
initial phase. Adding the fourth-order derivative term to
the NLS equation, we obtain Eq. (5). The conventional
solitons (11) are no longer stationary solutions of Eq. (5).
Moreover, any localized one-hump pulse launched as an
initial condition to Eq. (5) will radiate, i.e., stationary
single solitons do not exist for Eq. (5) in principle. A
formal analysis of the radiation problem for Eq. (5) can
be found in [12,13]. This analysis shows that the solution
(11) taken as an initial condition for Eq. (5) emits ra-
diation on the wave number corresponding to the phase
velocity resonance,

UO(C’ T) =

1++1+4a

k0=:l: 2

(12)
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The amplitude of the radiative waves can also be esti-
mated [12,13]

_ kom
Qrad ~ € V=,

(13)
In contrast to the case of the generalized NLS equation
with an additional third-order derivative term [8-11,13],
in the case of Eq. (5) the radiation is emitted symmet-
rically from both sides of the pulse. For \/a < 1 the
intensity of radiation is exponentially small (beyond all
orders), so that the soliton solution (11) is a good ap-
prozimate solution of Eq. (5).

Now, as the first step to construct BS’s of two iden-
tical radiative solitons, we need to locate them relative
to each other in such a way that the interference pattern
of their radiation vanishes exactly in both asymptotic re-
gions { — +oo (see also [19]). Figure 1 illustrates this
idea schematically. Without loss of generality we can
assume that we have one soliton (11) with (o = 0 and
1o = 0, which we denote as Up({, ), and the other soli-
ton Up({+AC, 7)e*A¥ with the maximum at (o = A( > 0
and the initial phase 99 = Ay > 0. Both solitons emit
radiation symmetrically and for each soliton taken sep-
arately there is a phase shift ¢o(c) between the soliton
and the emitted radiation [in general, ¢o(c) is nonzero].
Following the approach of [20], it is possible to show that
the radiation in the region { — —oo can be cancel if
the radiation from the second soliton [Up (¢ + A, 7)etA¥]
is coming to the first soliton [Up({, 7)] with the relative
phase shift —¢o(a). Thus, in order to cancel the radia-
tion we need to satisfy the condition

koAC + AY + 2¢o(a) = 27n, (14)
where n = 1,2,3,.... However, the condition (14) does
not guarantee the radiation compensation in the asymp-
totic region ( — oo. To cancel the radiation there we
should satisfy the other condition that can be obtained
in the similar way:

koAC — AY + 2¢o(a) = 27m, (15)
where m = 0,1,2,3,.... It immediately follows from (14)
and (15) that radiation can be canceled in both asymp-
totic regions only if two identical solitons are either in
phase (Ay = 0) or completely out of phase (Ay = ).
The form of the resulting two-soliton structure Urs with
the radiation canceled in both asymptotic regions (note
that, in general, this two-soliton structure can still be
nonstationary) is given by

Urs = Uo(¢, ) + Uo(C + AC, 7)e¥ + f((, 7, AC, Ag),
(16)

where Ay = 0 or m and f represents the standing wave
formed by the trapped radiation (see Fig. 3 for exam-
ples). It is important to note that the standing wave
f (in contrast to the radiation emitted by a single soli-
ton) has a zero phase shift with respect to the solitons
Uo(¢,7) and Up((+A(, 7). We can also consider the value
of the discrete parameter n of Eq. (14) as the order of
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the standing wave f (it is related to the number of zeros
in the central part of f). In general, it is quite compli-
cated to find ¢ and especially f analytically for /o < 1
(i.e., in the approximation of weak radiation). Moreover,
even the asymptotic result is hard to obtain, e.g., four
known approaches for the calculation of the intensity of
the asymptotic radiation for the case of the NLS equation
with the third-order dispersion give four slightly different
analytic results [8,10,11,13]. Since in this paper we are
interested in the physical picture rather than in rigorous
mathematical details, we will proceed with our analysis
assuming that we already know f and ¢o somehow.

Now to find stationary two-soliton BS’s we can employ
the effective particle approach of Ref. [29] (for the recent
examples of using this approach see [16,20]). The effec-
tive particle approach shows that the interaction between
two solitons in a Hamiltonian system is determined by the
nonlinear part of the corresponding system Hamiltonian,
which in the case of Eq. (5) is

(17)

1 oo
Hy = —5/ |U|*dC.

0.6

0.4

0.2+

FIG. 3. Examples of two-soliton BS’s formed by the stand-
ing wave of trapped radiation. Two-soliton BS’s are shown by
thick curves. Partial single solitons are shown by thin dashed
curves and standing waves formed due to trapping of radia-
tion are shown by thin solid curves. (a) The two-soliton BS
at n = 1. (b) The two-soliton BS at n = 9.



1160

Using the approximation of well-separated solitons,
one obtains [20,29]

HﬁdAQA¢)=—2/mImfRdUﬂU;+fWMC

— 0o

+(1 4 2), (18)

where the expression describing the interaction of the
first single soliton with the tail of the second one and
the standing wave of trapped radiation is written down
explicitly. Because of the symmetry, a similar expression
(1 + 2) has to be added to describe the interaction of
the second soliton with the tail of the first one and the
other edge of the standing wave. The effective interac-
tion potential Hin [defined by (18)] depends on the rela-
tive distance A( between the centers of the two solitons
and their relative phase difference Avy. Two-soliton BS’s
exist if this effective interaction potential (18) has local
extrema. These extrema are determined by the equations

8IIint _ a-H‘int _
8Ay 7 OAC =0 (19)

It is possible to show that the first of Egs. (19) gives
the result Ay = 0 or m, which has already been obtained
from the conditions of trapped radiation (14) and (15).
Thus we have only one variable A{ to be determined,
but two equations: the condition of the trapped radiation
(14) [or (15)] and the second equation of the system (19).
For fixed values of the soliton parameter a, n (or m), and
A1 (= 0 or ) this system is overdetermined with respect
to A(. However, if we solve this system assuming that
two continuous variables A( and a are unknown, we have
a good chance to find a discrete set of the solutions A(,,
and a, at least for some values of n and Aq.

As we have shown above, the difficulties in the ana-
lytic calculation of A(,, and «,, are significant. However,
there is a well-known and straightforward way to find the
corresponding stationary solutions numerically, using the
fact that possible two-soliton stationary solutions formed
due to trapped radiation have flat phase fronts. Look-
ing for the stationary solutions of Eq. (5) in the form
U(¢,7) = u({)e**™ (where u is a real function) we get
the equation of real parameters

u? =0, (20)

localized solutions of which correspond to stationary soli-
ton solutions of Eq. (5) and can be found by means of
the standard shooting technique (see, e.g., [15]). The re-
sults of this numerical analysis are shown in the form of
the energy-dispersion diagram of Fig. 4, where Q is the
energy of two-soliton BS’s determined by

o= [T wac— [~ wra, (21)

which is an integral of motion of Eq. (5).

One can see that, in addition to the already known
exact analytic solution (7) (shown in Fig. 4 as a filled
circle), which is a two-soliton BS of first order (i.e., the
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order n of the corresponding standing wave f is equal to
one), there are also other two-soliton BS’s of higher or-
der. (The two-soliton BS’s of third and ninth orders are
explicitly shown in the bottom part of Fig. 4. The stand-
ing wave, formed by the trapped radiation, can be clearly
seen between two soliton peaks.) Each of these solutions
corresponds to some particular value of n of Eq. (14)
and, in agreement with the above analysis, exists only
for one unique value of the parameter a,. We checked
the validity of the relation (14) for these two-soliton BS’s
and found very good agreement between numerical and
analytic results.

The question of stability of two-soliton and multisoli-
ton BS’s formed due to trapping of radiation is closely
related to the question of their origin. The analysis of this
section shows that these BS’s are formed as a result of
very delicate self-consistent balance, which can be easily
broken. This itself does not prove that BS’s formed due
to trapping of radiation should be unstable. However,
the fact that these BS’s do not form continuous families
in «a strongly supports the idea of inherent instability of
all BS’s of radiating solitons. Indeed, any perturbation
of a BS formed due to trapping of radiation will lead to

T T ; T : T T T
0 0.04 0.08 0.12
(04
03 0.4

0o 0=00252 @=0.0515
; /\ 0.2
0.1 ]
5 0 35 0
01 V
-0.24
0.2
-0.3 T nm T -0.4 T T
-100  -50 0 50 100 50  -25 0 25 50

FIG. 4. Energy-dispersion diagram for the discrete set of
stationary localized solutions of Eq. (5) in the form of
two-soliton BS’s (circles). For small values of a these so-
lutions look as two NLS solitons (11) with a standing wave
of trapped radiation between them. The filled circle corre-
sponds to the exact solution (7) shown in Fig. 2(a). The
dashed curve corresponds to the NLS equation limit. There
is a discrete set of infinitely many two-soliton BS’s for a — 0,
but some of the corresponding opened circles are located very
close to each other and cannot be distinguished in the scale
of this figure.
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an escape of some portion of radiation from this BS so
that the value of the energy @ for the localized part of
the solution will become lower. Since every BS formed
due to trapping of radiation is not a representative of a
continuous family, but instead a unique point in the cor-
responding energy-dispersion diagram, its shape cannot
be easily adjusted to a new stationary state because there
is no any other stationary solution with a slightly smaller
value of energy. In principle, the initial BS can finally
evolve into a BS of another order n with Quew < Qinit,
but since all BS states of the same class have shapes that
are quite different from each other, even this, the most
“successful,” scenario of the soliton evolution shows that
a small perturbation causes significant reshaping, which
in turn means that the initial BS formed due to trapping
of radiation is unstable.

In addition to these speculations we have carried out
numerical simulations to investigate the stability of the
discovered class of two-soliton BS’s formed due to trap-
ping of radiation. Except for the straightforward propa-
gation of various slightly perturbed stationary BS’s, we
also studied the evolution of perturbation eigenmodes.
To do this, we linearized equations around the BS of in-
terest and solved the resulting linearized equation to find
exponentially growing modes (for details of this technique
see, for example, [30]). The results can be formulated in
a simple way: all BS’s that we found are unstable. The
exponential increment of the fastest growing instability
mode is higher for BS’s of lower order and becomes very
small for BS’s of sufficiently high order. However, it is
always positive. An example of evolution of a slightly
perturbed solution (7) is shown in Fig. 5. A rigorous an-
alytic analysis of the stability of soliton BS’s formed by
mutual trapping of the radiation is currently being car-
ried out. [Note that we cannot use the stability criterion
of the effective particlelike approach in a straightforward
way (as in [20]), since it does not give a sufficient condi-
tion of stability for nonintegrable systems [16].]

III. OTHER EXAMPLES

We repeat the similar analytic and numerical analysis
for the system (6) and found that, in addition to two-

0.4t
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FIG. 5. Evolution of a slightly perturbed solution (7)

(two-soliton BS of first order).
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FIG. 6. Energy-dispersion diagram for the discrete set of
stationary localized solutions of the system (6) with » = 1,
s = —1 in the form of bright two-soliton BS’s (circles). The
filled circle corresponds to the exact solution (8) shown in Fig.

2(b).

soliton BS’s of first order (8) and (9), BS’s of radiating
solitons of higher orders exist as well. (For the theory of
radiating dark solitons see, e.g., [31].) They are presented
in Figs. 6 and 7 for the cases r =1, s = —1 and » = —1,
s = —1in Egs. (6), respectively. In the energy-dispersion
diagram of Fig. 6 the function Q is the total energy of
two-wave bright BS’s, which is determined by

o= [ (ol + o) (22)

In the energy-dispersion diagram of Fig. 7 the function
Q. is the complimentary energy of two-wave dark BS’s,
which is determined by

_ /_ ~ (20— Jwl® +1 - Jol?)dc. (23)

These Q and Q. are integrals of motion of the corre-
sponding versions of the system (6) for some particular
choice of the parameter o (o = 1/2). The standing wave,
formed due to trapping of radiation, is also clearly seen
between single two-wave solitons (see the bottom parts
of Figs. 6 and 7). Note that Figs. 4, 6, and 7 show
not all found stationary solutions of the corresponding
equations, but only two-soliton BS’s. Multisoliton BS’s
formed due to trapping of radiation exist as well and they
also have been found numerically. Finally, we checked nu-
merically the stability of all classes of radiating soliton
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FIG. 7. Energy-dispersion diagram for the discrete set of
stationary localized solutions of the system (6) with r = —1,
s = —1 in the form of dark two-soliton BS’s (circles). The
filled circle corresponds to the exact solution (9) shown in
Fig. 2(c).

BS’s of the system (6). Again all these BS’s are found to
be unstable.

IV. CONCLUSIONS

We have presented constructive examples that for some
dynamical systems stationary two-soliton (and multisoli-
ton) solutions can exist being in resonance with small
amplitude linear waves. The necessary condition for the
existence of such BS’s of radiating solitons is a symmet-
ric pattern of radiation emitted from the soliton core of
each single pulse. It is very important that, in contrast
to conventional solitons, soliton bound states formed due
to trapping of radiation do not form continuous fami-
lies of localized solutions. As a consequence, all BS’s of
radiating solitons have no chance to be stable.
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We propose and prove (analytically and numerically)
that the exact solutions (7)—(9) are, in fact, two-soliton
BS’s formed due to trapping of radiation. We also found
three corresponding classes of other two-soliton solutions
formed due to trapping of radiation. Representatives of
these classes can be classified by the order n of the stand-
ing wave of trapped radiation formed by interacting sin-
gle solitons. The stability problem for all three classes of
the found solitons has also been considered.

This paper provides insight into the physical essence
of broad classes of soliton solutions. In the works where
the exact solutions (7)—(9) were obtained, nothing was
mentioned about the origin and the physical nature of
these solutions. Moreover, some misunderstanding and
mistakes that occurred in the literature concerning this
topic would have been avoided had the physical picture
discussed in the present study been known. For exam-
ple, in the paper [27] it was claimed that the solution
(9) is “stable.” In [25] some solutions analogous to two-
soliton and multisoliton BS’s of our paper were declared
to be “rather stable.” Finally, in [19] it was mentioned
that the two-hump solutions, formed by radiative soli-
tons, can be “quasistable” in the sense that their insta-
bility growth rate is small. Formally the last statement
is correct since a two-soliton BS of sufficiently high order
does not have fast growing instability modes. However,
in this case the bound energy (18) for such a BS is also
exponentially small since there is practically no radiation
emitted. Thus, in principle, we do not have a quasistable
two-soliton BS, but two quasistable single solitons, which
nearly do not interact with each other.

Finally, we would like to note that the approach and
results obtained in the present paper can be readily ap-
plied to other models of a different physical context where
radiative solitons exist. As a matter of fact, this can be
expected in many other physical models where station-
ary solitonlike solutions are described by nonintegrable
dynamical systems with a rather complicated behavior
of the separatrix phase trajectories near critical points.
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